Adoption of direct bonding on the rise in tablet or larger applications

Filling air gap via direct bonding can help enhance the overall performance of a display significantly. Direct bonding not only improves the general optical performance with lower reflectivity, but also boosts durability and reduces the thickness. However, while the industry is well aware of such advantages, it would be challenging to persuade consumers to understand them. In other words, the marketing effect is relatively weak against the money and efforts invested.

Direct bonding costs more than the air gap solution. Bonding the cover glass to a touch panel and a liquid crystal display (LCD) or organic light-emitting diode (OLED) display requires additional material and process costs for adhesives. With the widespread use of direct bonding over the past two to three years, its yield rate has improved, but overall, it remains in the 90% range, still requiring additional process, material, and labor costs associated with rework.

Meanwhile, the application of direct bonding is no longer limited to high-end products. Direct bonding is now applied to mid- to-low cost smartphones, and the yield rate for smartphones has reached a relatively high level, resulting in a drop in extra costs. In addition, direct bonding helps make smartphones slimmer. Following suit of smartphones, the use of direct bonding is expected to increase across tablet and notebook PCs. Apple Inc. already applied direct bonding to the newly launched 9.7-inch iPad Air 2.

The adhesive market for touch panels including optically clear adhesive (OCA) and optically clear resin (OCR) is on the rise. However, a decline in the number of touch panel layers is negative to OCA. An increase in demand for touch panels with many laminated layers such as the GFF type would be welcome news for the OCA market, but the GFF is losing its ground to the GF1 type. Furthermore, GF2, LCD in-cell, LCD on-cell, and AMOLED on-cell touch types are expanding their market share. These touch panel structures with a lesser number of layers than GFF have advantages in making a thinner and cheaper product, and therefore are promising to consumers or brands. In contrast, demand for OCR and the market are expected to grow steadily.
Lead Analyst

Duke Yi - Director, Display Material & Components

With more than 10 years of industry experience, Duke Yi is leading a display parts and materials research team at IHS Technology. His team researches on display parts, chemical materials, and the touch panel industry, and has published more than 30 different kinds of reports.

Duke joined IHS in 2000 and has conducted researches on the touch industry and backlight unit industry. He has also conducted various projects with display leading companies and government agencies. He was invited to a number of conferences as a speaker.

He received a Bachelor’s Degree in Microwave Engineering from Chungbuk National University.

About IHS

IHS (NYSE: IHS) is the leading source of information, insight and analytics in critical areas that shape today's business landscape. Businesses and governments in more than 165 countries around the globe rely on the comprehensive content, expert independent analysis and flexible delivery methods of IHS to make high-impact decisions and develop strategies with speed and confidence. IHS has been in business since 1959 and became a publicly traded company on the New York Stock Exchange in 2005. Headquartered in Englewood, Colorado, USA, IHS is committed to sustainable, profitable growth and employs 8,000 people in 31 countries around the world.

Table of Contents

I. Introduction
 Research background
 Research methodology and scope
 Definitions

II. Touch panel market forecast (2012–2018)
 Application segmentation
 Touch panel market forecast (Unit)
 Touch panel market forecast (Area)
 Touch panel market forecast (Value)
 Touch panel market index chart
 Touch panel market forecast by application (Unit)
 Touch panel market forecast by application (Area)
 Touch panel market forecast by application (Value)
 Market forecast by touch panel technology (Unit)
 Market forecast by touch panel technology (Area)
 Market forecast by touch panel technology (Value)
 Touch panel market forecast by size (Unit)
 Touch panel market forecast by size (Area)
 Touch panel market forecast by size (Value)
 Projected capacitive touch panel market forecast by structure (Unit)
 Projected capacitive touch panel market forecast by structure (Area)

III. Air gap vs direct bonding
 Smart device – one to look at
 Benefits of direct bonding
 Light reflection mechanism
 Direct bonding and increasing transmittance
 Technology to reduce reflection
 Factors that help in enhancing outdoor readability
 Increase in contrast ratio after direct bonding
 Building thin displays through direct bonding
 Enhanced durability
 Direct bonding trend and application trend
 Emergence of total solutions following widespread direct bonding

IV. Layer structure analysis by touch panel type
 Projected capacitive touch type – GFF
 Projected capacitive touch type – GF1
 Projected capacitive touch type – GF2
 Projected capacitive touch type – GG
 Projected capacitive touch type – G1F
 Projected capacitive touch type – G2, G1, display integrated types
 Projected capacitive touch type – With added adhesive layers
 Resistive touch type
 Number of adhesive layers by projected capacitive touch type
 Touch layer structure and forecast by application – Smartphone
 Touch layer structure and forecast by application – Tablets
 Touch layer structure and forecast by application – Notebook PC
 Layer structure and forecast by application – AIO PC

V. Number of touch panel adhesive layers and thickness of key products
 Outline
 Smartphone by touch layer types – GFF
 Smartphone by touch layer types – GFF (Average)
 Smartphone by touch layer types – GF1
 Smartphone by touch layer types – GF1 (Average)
 Smartphone by touch layer types – G2
 Smartphone by touch layer types – G2 (Average)
 Smartphone by touch layer types – Display-integrated types (LCD in-cell/on-cell, AMOLED on-cell)
 Smartphone by touch layer types – Display integrated types (LCD in-cell/on-cell, AMOLED on-cell)
 (Average)
 Smartphone by touch layer types – GG
 Smartphone by touch layer types – Film touch for bended display
 Smartphone by touch layer types – Synthesis
 Tablet by touch layer types – Film types
 Tablet by touch layer types – Glass types
 Tablet by touch layer types – Glass types (Average)
 Tablet by touch layer types – Synthesis
VI. OCA/OCR market outlook (2013–2018)
Total OCA/OCR market forecast (Value)
Total OCA/OCR market forecast by size group (Value)
Total market forecast by OCA and OCR (Value)
Total OCA/OCR market forecast by application (Value)
Total OCA market forecast (Value, area)
Total OCA demand forecast by size group (Area)
Total OCA demand forecast by touch technology (Area)
Total OCA demand forecast by major application (Area)
Total OCA demand forecast by OCA thickness group (Area)
Total OCA market forecast by OCA thickness group (Value)
Total OCR market forecast (Value, volume)
Total OCR demand forecast by size group (Volume)
Total OCR demand forecast by major application (Volume)
OCA ASP forecast (Dollars)
OCR ASP forecast (Dollars)
OCA market share in 2014
OCR market share in 2014

VII. OCA and OCR comparison and technological issues
Requirements and development direction
Classification by adhesive material
OCA manufacturing process
OCA film structure and release film
OCA selection points
OCR types and properties
OCA hardness and relation with other characteristics
Requirements by adhesion location
Comparison between OCA and OCR
OCA/OCR technology development trend
Half-cured OCA
OCR direct bonding by display type (LCD and OLED)
Emergence of stencil and slit coater OCR coating technology
Hybrid OCR
OCA for flexible display
Growing metal mesh film sensor market
Major OCR/OCA equipment suppliers

Appendix. Touch panel lamination process
Overview of touch panel manufacturing process
OCA lamination process: Soft to soft, soft to hard (Film to film, film to rigid)
OCA lamination process: Hard to hard – 1 (Rigid to rigid)
OCA lamination process: Hard to hard – 2 (Rigid to rigid)
OCA lamination process in sum – Tact and alignment
OCR direct bonding
OCR lamination process – Dam and fill method
Recommendations for successful OCA lamination process
Touch panel lamination process order – Resistive touch
Touch panel lamination process order – Projected capacitive touch panel (GFF)
Touch panel lamination process order – Projected capacitive touch panel (GG)
Touch panel lamination process order – Projected capacitive touch panel (GF2, G1F)
Touch panel lamination process order – Projected capacitive touch panel (G2, In-cell/On-cell type)