Recently, interest in next-generation display is growing in the flat-panel display market because of the congestion and worsening profitability in the existing a-Si TFT-LCD. In order to implement next-generation display, it is necessary to develop new core technology of display and to improve performance of TFT (thin film transistor), the core device of Active-driven.

Thin film transistor can be distinguished into a-Si TFT, LTPS TFT, Organic TFT, Oxide TFT, etc. depending on the type of materials form semiconductor, out of gate electrode, dielectric, semiconductor, and source/drain electrodes that make-up the transistor. Samsung Electronics signed a license on Oxide TFT-related technology, the transistor that achieved rapid development of technology between the last 5 years.

Oxide TFT is not only possible to implement large-area and high-resolution, but also can be applied to no-glasses 3D TV, and Oxide materials can be processed at room temperature, so implementing flexible display that utilizes a plastic substrate can be done. It is also getting a lot of attention as next-transistor that can be applied to next-generation display with clarity advantage.

Oxide TFT is fully recognized for its potential and practical technology as backplane power devices of various display panels, research and development investments are made in display panel major companies in Korea and Japan with the mass production in mind, so sooner or later, Oxide TFT is expected to appear on the LCD, AMOLED, and e-paper market.

IHS Displaybank has issued a report on technology status and related companies’ development trends of the attention-attracting in the industry, Oxide TFT.
Table of Contents

Chapter 1. Overview
 1.1. Research Background
 1.2. Research Methodology

Chapter 2. Oxide TFT Property
 2.1. Oxide TFT Overview
 2.2. Oxide TFT Development Trend
 2.3. Structural Property of Oxide Semiconductor
 2.3.1. Atomic Structure and Energy Band of Oxide Semiconductor
 2.3.2. Defect Property of Oxide Semiconductor
 2.4. Electrical Property of Oxide Semiconductor
 2.4.1. Conductive Property of Oxide Semiconductor
 2.4.2. Doping Property of Oxide Semiconductor
 2.5. Oxide Semiconductor and dielectric Film Required Property and Type
 2.5.1. Required Property and Type of Oxide Semiconductor
 2.5.2. Required Property and Type of dielectric Film

Chapter 3. Manufacturing Process and Structure of Oxide TFT
 3.1. Structure of TFT
 3.1.1. Structure of General TFT
 3.1.2. Structure of Oxide TFT
 3.2. Operation Principle of Oxide TFT
 3.3. Property of Oxide TFT
 3.4. Oxide TFT Manufacturing Process
 3.4.1. bottom gate top contact
 3.4.2. bottom gate bottom contact
 3.4.3. Top gate top contact
 3.4.4. Top gate bottom contact
 3.4.5. Self aligned

Chapter 4. Application of Oxide TFT
 4.1. LCD Backplane
 4.2. OLED Backplane
 4.3. E-paper Backplane
 4.4. Sensor Device
 4.5. Memory Device
 4.6. Oxide TFT-based Circuit

Chapter 5. Development Status of Oxide TFT by Maker
 5.1. Material Companies Status
 5.1.1. Korea
 5.1.2. Japan
 5.2. Equipment Companies Status
 5.3. Device Companies Status
 5.2.1. Korea
 5.2.2.1. LG Display
 5.2.2.2. SMD
 5.2.2.3. Samsung Electronics
 5.2.2.4. Electronics and Telecommunications Research Institute
 5.2.2. Japan
 5.2.2.1. SEL
 5.2.2.2. Sharp
 5.2.2.3. Sony
 5.2.2.4. Toppan
 5.2.2.5. Toshiba
 5.2.3. Taiwan
 5.2.3.1. AUO
 5.2.4. The United States
 5.2.4.1. CBRITE
 5.2.4.2. HP

Chapter 6. Key Issues of Oxide TFT
 6.1. Panel Manufacturing Process
 6.1.1. Low Mask Structure Development
 6.2.2. Low Resistance Wiring Problem
 6.2. Device Reliability
 6.3. New Materials and Process

Chapter 7. Conclusion

Chapter 8. Index
 8.1. Table
 8.2. Figure